
http://www.arts.rpi.edu/~skot

challenged us to ‘connect with the acoustic environment and all that inhabits it’ by ‘going
below the surface of what is heard and also expanding to the whole field of sound
whatever one’s usual focus might be.’ (Oliveros 1998: 114-15) Composers and acoustic
ecologists such as Christina Kubisch, R. Murray Schafer, and Hildegard Westerkamp
have shown us that the sounded environment can itself be composition, and have, in fact,

II. A Brief Survey of Pitch/Time Shifting Methods

At this point it might be worthwhile to outline the various techniques for time-
compressing audio, and the resultant artifacts that accompany these processes. The
problem involved in changing the time of a recording without changing the pitch (or vice
versa) involves two possible types of processes. The first type is the application of a
mathematical process to the soundfile. The second type of process requires applying what
we know about the human auditory system to the soundfile.

There are a variety of mathematical processes that can be used to change the pitch
or the time of a sound-file independently of one another. The primary methods include
using the phase vocoder, the wavelet transform, time-granulation, linear predictive
coding, and simple sample-rate conversion. While comprehensive explanations of these
methods can be found in Curtis Road’s Computer Music Tutorial (Roads 1996: 440-48), I
will give brief descriptions of each:

The Phase Vocoder: This method employs a frequency-domain analysis of the
soundfile (using the fast Fourier Transform, or FFT), and then re-synthesizing the
soundfile using additive synthesis. The analysis is done in a series of short, overlapping
segments, or frames. Once the pitch information in the soundfile is analyzed and
catalogued, it is a simple matter to change the time or pitch of the sound. To alter the
time, the frames can simply be read back at different rates by changing the amount of
overlap between frames. To alter the pitch, the frequency information in the frame can
simply be re-scaled. This method is particularly useful for pitched-oriented sounds, but
can be problematic for complex sounds, or sounds with complex attacks. Artifacts
include smearing and reverberation effects.

The Wavelet Transform: This method is similar to the phase vocoder. A
frequency-domain analysis is made, but unlike the FFT used in the phase vocoder, the
segments are not of fixed duration; rather, they are dependent on the frequency
information. The higher the frequency content in the analysis, the shorter the duration of
the segment, or wavelet. Wavelet transforms tend to be more accurate for sounds with
lots of high-frequency content because they are better at determining the timing-
resolution of higher frequencies.

Time-Granulation: A time-domain-based process, time-granulation involves a
kind of rapid-fire, microscopic sampling of the sound-file into hundreds or even
thousands of grains per second. These grains can have their own unique envelope
structure, and may overlap each other. To alter the time of the original sound file, grains
can be dropped or doubled. To alter the pitch, sample-rate conversion is performed, and
grains are doubled to account for the temporal change that would normally result. The
obvious problem with this approach is that the transitions between one grain and the next
can cause transient artifacts due to changes in level, waveform zero crossings, and other
inconsistencies.

Linear Predictive Coding: This method involves analyzing a sound-file and
extracting information for modeling the excitation/resonance properties of the instrument
that is the subject of the recording. For this reason, linear predictive coding is limited to
sounds that have the characteristics of the voice or of musical instruments. The
information stored in the analysis, which includes pitch information, filter coefficients,
duration, and other kinds of data, can be changed and then re-synthesized in order to
change the time or pitch.

http://www.arts.rpi.edu/~skot

	return:

